Rapid methane hydrate formation to develop a cost effective large scale energy storage system

By: Veluswamy, HP (Veluswamy, Hari Prakash)[1]; Wong, AJH (Wong, Alison Jia Hui)[1]; Babu, P (Babu, Ponnivalavan)[1]; Kumar, R (Kumar, Rajnish)[2]; Kulprathipanja, S (Kulprathipanja, Santi)[3]; Rangsunvigit, P (Rangsunvigit, Pramoch)[4]; Linga, P (Lingga, Praveen)[1]

Abstract
Natural gas (NG) is the cleanest burning fossil fuel and its usage can significantly reduce CO2 emissions from power plants. With its widespread use, there is an ever increasing need to develop technologies to store NG on a large scale. NG storage via clathrate hydrates is the best option for a large scale storage system because of its non-explosive nature, mild storage conditions, high volumetric capacity and being an environmentally benign process. In this work, we demonstrate a new method to achieve rapid methane hydrate formation in an unstirred tank reactor configuration (UTR) at moderate temperature and pressure conditions employing tetrahydrofuran (THF) as a promoter. For the first time, THF is reported to act both as a thermodynamic and an excellent kinetic promoter for methane hydrate formation. We demonstrate a multi-scale experimental validation of our method to a volumetric sample scale-up factor of 120 and internal reactor diameter scale-up factor of 10. Further, new insights on the dissociation behavior of the hydrates are reported. There is a competitive edge for storing NG via clathrate hydrates compared to compressed natural gas storage both in terms of cost and safety. (C) 2016 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: Gas hydrates; Energy storage; Tetrahydrofuran; Enhanced kinetics; Natural gas storage; Unstirred tank reactor

KeyWords Plus: NATURAL-GAS HYDRATE; UNSTIRRED GAS/LIQUID SYSTEM; PRE-COMBUSTION CAPTURE; CARBON-DIOXIDE; SELF-PRESERVATION; CLATHRATE HYDRATE; HYDROGEN STORAGE; WATER DROPLETS; CRYSTAL-GROWTH; HOLLOW SILICA

Author Information
Reprint Address: Linga, P (reprint author)

Addresses:

E-mail Addresses: Praveen.Lingga@nus.edu.sg

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
</table>

Citation Network

24 Times Cited
81 Cited References
View Related Records
Create Citation Alert

Usage Count
Last 180 Days: 27
Since 2013: 97
Learn more

Most Recent Citation
Zhang, Zhaoli. Thermal properties enforcement of carbonate ternary via lithium fluoride: A heat transfer fluid for concentrating solar power systems. RENEWABLE ENERGY, OCT 2017.

Add to Marked List 2 of 2
Rapid methane hydrate formation to develop a cost effective large scale energy storage system

By: Veluswamy, HP (Veluswamy, Hari Prakash) [1]; Wong, AJH (Wong, Alison Jia Hui) [1]; Babu, P (Babu, Ponnivalavan) [1]; Kumar, R (Kumar, Rajnish) [2]; Kulprathipanja, S (Kulprathipanja, Santi) [3]; Rangsunvigit, P (Rangsunvigit, Pramoch) [4]; Linga, P (Linga, Praveen) [1]

Abstract
Natural gas (NG) is the cleanest burning fossil fuel and its usage can significantly reduce CO2 emissions from power plants. With its widespread use, there is an ever increasing need to develop technologies to store NG on a large scale. NG storage via clathrate hydrates is the best option for a large scale storage system because of its non-explosive nature, mild storage conditions, high volumetric capacity and being an environmentally benign process. In this work, we demonstrate a new method to achieve rapid methane hydrate formation in an unstirred tank reactor configuration (UTR) at moderate temperature and pressure conditions employing tetrahydrofuran (THF) as a promoter. For the first time, THF is reported to act both as a thermodynamic and an excellent kinetic promoter for methane hydrate formation. We demonstrate a multi-scale experimental validation of our method to a volumetric sample scale-up factor of 120 and internal reactor diameter scale-up factor of 10. Further, new insights on the dissociation behavior of the hydrates are reported. There is a competitive edge for storing NG via clathrate hydrates compared to compressed natural gas storage both in terms of cost and safety. (C) 2016 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: Gas hydrates; Energy storage; Tetrahydrofuran; Enhanced kinetics; Natural gas storage; Unstirred tank reactor

KeyWords Plus: NATURAL-GAS HYDRATE; UNSTIRRED GAS/LIQUID SYSTEM; PRE-COMBUSTION CAPTURE; CARBON-DIOXIDE; SELF-PRESERVATION; CLATHRATE HYDRATE; HYDROGEN STORAGE; WATER DROPLETS; CRYSTAL-GROWTH; HOLLOW SILICA

Author Information
Reprint Address: Linga, P (reprint author)

Addresses:

E-mail Addresses: Praveen.Linga@nus.edu.sg
Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>National University of Singapore</td>
<td>R-279-000-420-750</td>
</tr>
<tr>
<td></td>
<td>R-281-508-001-646</td>
</tr>
<tr>
<td></td>
<td>R-281-508-001-733</td>
</tr>
<tr>
<td>CSIR project</td>
<td>CSC 0102</td>
</tr>
<tr>
<td>Thailand Research Fund</td>
<td></td>
</tr>
</tbody>
</table>

[View funding text](http://apps.webofknowledge.com.libproxy1.nus.edu.sg/full_record?doc=2&SID=Q2VuBVgRLHLLH6INWvl&page=1&doc=2)

Publisher

ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE, SWITZERLAND

Categories / Classification

- **Research Areas:** Engineering
- **Web of Science Categories:** Engineering, Environmental; Engineering, Chemical

Document Information

- **Document Type:** Article
- **Language:** English
- **Accession Number:** WOS:000371560100018
- **ISSN:** 1385-8947
- **eISSN:** 1873-3212

Journal Information

- **Performance Trends:** Essential Science Indicators
- **Impact Factor:** Journal Citation Reports®

Other Information

- **IDS Number:** DF7TI
- **Cited References in Web of Science Core Collection:** 81
- **Times Cited in Web of Science Core Collection:** 19
Rapid methane hydrate formation to develop a cost effective large scale energy storage system

By: Veluswamy, HP (Veluswamy, Hari Prakash)[1]; Wong, AJH (Wong, Alison Jia Hui)[1]; Babu, P (Babu, Ponnivalavan)[1]; Kumar, R (Kumar, Rajnish)[2]; Kulprathipanja, S (Kulprathipanja, Santi)[3]; Rangsunvigit, P (Rangsunvigit, Pramoch)[4]; Linga, P (Linga, Praveen)[1]

CHEMICAL ENGINEERING JOURNAL
Volume: 290 Pages: 161-173
DOI: 10.1016/j.cej.2016.01.026
Published: APR 15 2016

Abstract

Natural gas (NG) is the cleanest burning fossil fuel and its usage can significantly reduce CO2 emissions from power plants. With its widespread use, there is an ever increasing need to develop technologies to store NG on a large scale. NG storage via clathrate hydrates is the best option for a large scale storage system because of its non-explosive nature, mild storage conditions, high volumetric capacity and being an environmentally benign process. In this work, we demonstrate a new method to achieve rapid methane hydrate formation in an unstirred tank reactor configuration (UTR) at moderate temperature and pressure conditions employing tetrahydrofuran (THF) as a promoter. For the first time, THF is reported to act both as a thermodynamic and an excellent kinetic promoter for methane hydrate formation. We demonstrate a multi-scale experimental validation of our method to a volumetric sample scale-up factor of 120 and internal reactor diameter scale-up factor of 10. Further, new insights on the dissociation behavior of the hydrates are reported. There is a competitive edge for storing NG via clathrate hydrates compared to compressed natural gas storage both in terms of cost and safety. (C) 2016 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: Gas hydrates; Energy storage; Tetrahydrofuran; Enhanced kinetics; Natural gas storage; Unstirred tank reactor
KeyWords Plus: NATURAL-GAS HYDRATE; UNSTIRRED GAS/LIQUID SYSTEM; PRE-COMBUSTION CAPTURE: CARBON-DIOXIDE; SELF-PRESERVATION; CLATHRATE HYDRATE; HYDROGEN STORAGE; WATER DROPLETS; CRYSTAL-GROWTH; HOLLOW SILICA

Author Information
Reprint Address: Linga, P (reprint author)

Addresses:

Hide ResearcherID and ORCID

Citation Network

15 Times Cited
81 Cited References
View Related Records

All Times Cited Counts
15 in All Databases
15 in Web of Science Core Collection
0 in BIOSIS Citation Index
0 in Chinese Science Citation Database
0 in Data Citation Index
0 in Russian Science Citation Index
0 in SciELO Citation Index
15 in All Databases
15 in Web of Science Core Collection
0 in BIOSIS Citation Index
0 in Chinese Science Citation Database
0 in Data Citation Index
0 in Russian Science Citation Index
0 in SciELO Citation Index

Usage Count
Last 180 Days: 31
Since 2013: 74
Learn more

This record is from:
Web of Science Core Collection

View Record in Other Databases:
View biological data (in BIOSIS Previews)

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.