The clathrate hydrate process for post and pre-combustion capture of carbon dioxide

By: Linga, P (Lingga, Praveen); Kumar, R (Kumar, Rajnish); Englezos, P (Englezos, Peter)

View ResearcherID and ORCID

JOURNAL OF HAZARDOUS MATERIALS
Volume: 149 Issue: 3 Pages: 625-629
DOI: 10.1016/j.jhazmat.2007.06.086
Published: Nov 15 2007
Document Type: Article; Proceedings Paper

Conference
Conference: 8th International Conference on Protection and Restoration of the Environment
Location: Chania, GREECE
Date: Jul 03-07, 2006

Sponsor(s): Tech Univ Crete; Stevens Inst Technol

Abstract
One of the new approaches for capturing carbon dioxide from treated flue gases (post-combustion capture) is based on gas hydrate crystallization. The basis for the separation or capture of the CO2 is the fact that the carbon dioxide content of gas hydrate crystals is different than that of the flue gas. When a gas mixture of CO2 and H2 forms gas hydrates, the CO2 prefers to partition in the hydrate phase. This provides the basis for the separation of CO2 (pre-combustion capture) from a fuel gas (CO2/H2) mixture. The present study illustrates the concept and provides basic thermodynamic and kinetic data for conceptual process design. In addition, hybrid conceptual processes for pre and post-combustion capture based on hydrate formation coupled with membrane separation are presented. (C) 2007 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: gas hydrates; gas separation; post-combustion; pre-combustion; CO2 recovery
KeyWords Plus: FLUE-GAS; PHASE-EQUILIBRIUM; POWER-PLANTS; CO2; RECOVERY; TECHNOLOGY; GASIFICATION; SEPARATION; MIXTURES; HYDROGEN

Author Information

E-mail Addresses: englezos@interchange.ubc.ca

Publisher
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Journal Information

Performance Trends: Essential Science Indicators
Impact Factor: Journal Citation Reports

Categories / Classification
Research Areas: Engineering; Environmental Sciences & Ecology
Web of Science Categories: Engineering; Environmental; Environmental Sciences

Cited References: 25

Showing 25 of 25 View All in Cited References page

The clathrate hydrate process for post and pre-combustion capture of carbon dioxide

By: Linga, P (Linga, Praveen); Kumar, R (Kumar, Rajnish); Englezos, P (Englezos, Petar)

Abstract

One of the new approaches for capturing carbon dioxide from treated flue gases (post-combustion capture) is based on gas hydrate crystallization. The basis for the separation or capture of the CO2 is the fact that the carbon dioxide content of gas hydrate crystals is different than that of the flue gas. When a gas mixture of CO2 and H2 forms gas hydrates the CO2 prefers to partition in the hydrate phase. This provides the basis for the separation of CO2 (pre-combustion capture) from a fuel gas. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide with bromide and Nano-Al2O3. (C) 2007 Elsevier B.V. All rights reserved.

Keywords

Author Keywords: gas hydrates; gas separation; post-combustion; pre-combustion; CO2 recovery

KeyWords Plus: FLUE-GAS; PHASE-EQUILIBRUM; POWER-PLANTS; CO2; RECOVERY; TECHNOLOGY; GASIFICATION; SEPARATION; MIXTURES; HYDROGEN

Categories / Classification

Research Areas: Engineering; Environmental Sciences & Ecology

Web of Science Categories: Engineering, Environmental, Environmental Sciences

Document Information

Document Type: Article; Proceedings Paper

Language: English

Accession Number: WOS:000251404900017

PubMed ID: 17689007

ISSN: 0304-3894

Journal Information

Performance Trends: Essential Science Indicators

Impact Factor: Journal Citation Reports

Other Information

IDS Number: 237V0

Cited References in Web of Science Core Collection: 25

Times Cited in Web of Science Core Collection: 252
The clathrate hydrate process for post and pre-combustion capture of carbon dioxide

By: Linga, P; Praveen; Kumar, R; Rajnish; Englezos, P

Abstract

One of the new approaches for capturing carbon dioxide from treated flue gases (post-combustion capture) is based on gas hydrate crystallization. The basis for the separation or capture of the CO2 is the fact that the carbon dioxide content of gas hydrate crystals is different than that of the flue gas. When a gas mixture of CO2 and H2 forms gas hydrates the CO2 prefers to partition in the hydrate phase. This provides the basis for the separation of CO2 (pre-combustion capture) from a fuel gas (CO2(H2)-2) mixture. The present study illustrates the concept and provides basic thermodynamic and kinetic data for conceptual process design. In addition, hybrid conceptual processes for pre and post-combustion capture based on hydrate slurry transportation in carbon dioxide

Keywords

gas hydrate; gas separation; post-combustion; pre-combustion; CO2 recovery

Author Information

Reprint Address: Englezos, P (reprint author)

E-mail Addresses: englezos@interchange.ubc.ca

Publisher

ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Categories / Classification

Research Areas: Engineering; Environmental Sciences & Ecology

Web of Science Categories: Engineering; Environmental Sciences; Environmental Engineering

Document Information

Document Type: Article; Proceedings Paper

Language: English

Accession Number: WOS:000251404900017

PubMed ID: 17689007

ISSN: 0304-3894

Journal Information

Performance Trends: Essential Science Indicators

Impact Factor: Journal Citation Reports

Other Information

IDS Number: 237VQ

Cited References in Web of Science Core Collection: 25

Times Cited in Web of Science Core Collection: 246
The clathrate hydrate process for post and pre-combustion capture of carbon dioxide

By: Linga, P (Linga, Praveen); Kumar, R (Kumar, Rajnish); Englezos, P (Englezos, Peter)

JOURNAL OF HAZARDOUS MATERIALS
Volume: 149 Issue: 3 Pages: 625-629
DOI: 10.1016/j.jhazmat.2007.06.086
Published: NOV 19 2007

Abstract

One of the new approaches for capturing carbon dioxide from treated flue gases (post-combustion capture) is based on gas hydrate crystallization. The basis for the separation or capture of the CO2 is the fact that the carbon dioxide content of gas hydrate crystals is different than that of the flue gas. When a gas mixture Of CO2 and H2 forms gas hydrates the CO2 prefers to partition in the hydrate phase. This provides the basis for the separation of CO2 (pre-combustion capture) from a fuel gas (CO2/H2) mixture. The present study illustrates the concept and provides basic thermodynamic and kinetic data for conceptual process design. In addition, hybrid conceptual processes for pre and post-combustion capture based on hydrate formation coupled with membrane separation are presented. (C) 2007 Elsevier B.V. All rights reserved.

Keywords

Author Keywords: gas hydrates; gas separation; post-combustion; pre-combustion; CO2 recovery

KeyWords Plus: FLUE-GAS; PHASE-EQUILIBRIUM; POWER-PLANTS; CO2; RECOVERY; TECHNOLOGY; GASIFICATION; SEPARATION; MIXTURES; HYDROGEN

Author Information

E-mail Addresses: englezos@interchange.ubc.ca

Publisher
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Categories / Classification

Research Areas: Engineering; Environmental Sciences & Ecology
Web of Science Categories: Engineering, Environmental; Environmental Sciences

Document Information

Document Type: Article; Proceedings Paper
Language: English
Accession Number: WOS:000251404900017
PubMed ID: 17689007
ISSN: 0304-3894

Journal Information
Performance Trends: Essential Science Indicators

Citation Network

236 Times Cited
25 Cited References

Most Recent Citation

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.
The clathrate hydrate process for post and pre-combustion capture of carbon dioxide

By: Linga, P (Linga, Praveen); Kumar, R (Kumar, Rajnish); Englezos, P (Englezos, Peter)

Abstract

One of the new approaches for capturing carbon dioxide from treated flue gases (post-combustion capture) is based on gas hydrate crystallization. The basis for the separation or capture of the CO2 is the fact that the carbon dioxide content of gas hydrate crystals is different than that of the flue gas. When a gas mixture of CO2 and H2 forms gas hydrates the CO2 prefers to partition in the hydrate phase. This provides the basis for the separation of CO2 (pre-combustion capture) from a fuel gas (CO2/H2) mixture. The present study illustrates the concept and provides basic thermodynamic and kinetic data for conceptual process design. In addition, hybrid conceptual processes for pre and post-combustion capture based on hydrate formation coupled with membrane separation are presented. (C) 2007 Elsevier B.V. All rights reserved.

Keywords

Author Keywords: gas hydrates; gas separation; post-combustion; pre-combustion; CO2 recovery

KeyWords Plus: FLUE-GAS; PHASE-EQUILIBRIUM; POWER-PLANTS; CO2; RECOVERY; TECHNOLOGY; GASIFICATION; SEPARATION; MIXTURES; HYDROGEN

Author Information

Reprint Address: Englezos, P (reprint author)

E-mail Addresses: englezos@interchange.ubc.ca

Publisher

ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
The clathrate hydrate process for post and pre-combustion capture of carbon dioxide

By: Linga, P (Linga, Praveen); Kumar, R (Kumar, Rajnish); Englezos, P (Englezos, Peter)

JOURNAL OF HAZARDOUS MATERIALS
Volume: 149 Issue: 3 Pages: 625-629
DOI: 10.1016/j.jhazmat.2007.06.086
Published: NOV 19 2007

Abstract

One of the new approaches for capturing carbon dioxide from treated flue gases (post-combustion capture) is based on gas hydrate crystallization. The basis for the separation or capture of the CO2 is the fact that the carbon dioxide content of gas hydrate crystals is different than that of the flue gas. When a gas mixture of CO2 and H2 forms gas hydrates the CO2 prefers to partition in the hydrate phase. This provides the basis for the separation of CO2 (pre-combustion capture) from a fuel gas (CO2/H2) mixture. The present study illustrates the concept and provides basic thermodynamic and kinetic data for conceptual process design. In addition, hybrid conceptual processes for pre and post-combustion capture based on hydrate formation coupled with membrane separation are presented. (C) 2007 Elsevier B.V. All rights reserved.

Keywords

Author Keywords: gas hydrates; gas separation; post-combustion; pre-combustion; CO2 recovery

Keywords Plus: FLUE-GAS; PHASE-EQUILIBRIUM; POWER-PLANTS; CO2; RECOVERY; TECHNOLOGY; GASIFICATION; SEPARATION; MIXTURES; HYDROGEN

Author Information

Reprint Address: Englezos, P (reprint author)

E-mail Addresses: englezos@interchange.ubc.ca

Publisher
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Categories / Classification

Research Areas: Engineering; Environmental Sciences & Ecology
Web of Science Categories: Engineering, Environmental; Engineering, Civil; Environmental Sciences

Document Information
Document Type: Article; Proceedings Paper
The clathrate hydrate process for post and pre-combustion capture of carbon dioxide

By: Linga, P (Linga, Praveen); Kumar, R (Kumar, Rajnish); Englezos, P (Englezos, Peter)

Abstract

One of the new approaches for capturing carbon dioxide from treated flue gases (post-combustion capture) is based on gas hydrate crystallization. The basis for the separation or capture of the CO2 is the fact that the carbon dioxide content of gas hydrate crystals is different than that of the flue gas. When a gas mixture of CO2 and H2 forms gas hydrates, the CO2 prefers to partition in the hydrate phase. This provides the basis for the separation of CO2 (pre-combustion capture) from a fuel gas (CO2/H2) mixture. The present study illustrates the concept and provides basic thermodynamic and kinetic data for conceptual process design. In addition, hybrid conceptual processes for pre and post-combustion capture based on hydrate formation coupled with membrane separation are presented. (C) 2007 Elsevier B.V. All rights reserved.

Keywords

Author Keywords: gas hydrates; gas separation; post-combustion; pre-combustion; CO2 recovery

KeyWords Plus: FLUE-GAS; PHASE-EQUILIBRIUM; POWER-PLANTS; CO2; RECOVERY; TECHNOLOGY; GASIFICATION; SEPARATION; MIXTURES; HYDROGEN
The clathrate hydrate process for post and pre-combustion capture of carbon dioxide

By: Linga, P (Linga, Praveen); Kumar, R (Kumar, Rajnish); Englezos, P (Englezos, Peter)

JOURNAL OF HAZARDOUS MATERIALS
Volume: 149 Issue: 3 Pages: 625-629
DOI: 10.1016/j.jhazmat.2007.06.086
Published: NOV 19 2007

Conference
Conference: 8th International Conference on Protection and Restoration of the Environment
Location: Chania, GREECE
Date: JUL 03-07, 2006
Sponsor(s): Tech Univ Crete; Stevens Inst Technol

Abstract
One of the new approaches for capturing carbon dioxide from treated flue gases (post-combustion capture) is based on gas hydrate crystallization. The basis for the separation or capture of the CO2 is the fact that the carbon dioxide content of gas hydrate crystals is different than that of the flue gas. When a gas mixture of CO2 and H2 forms gas hydrates the CO2 prefers to partition in the hydrate phase. This provides the basis for the separation of CO2 (pre-combustion capture) from a fuel gas (CO2/H2) mixture. The present study illustrates the concept and provides basic thermodynamic and kinetic data for conceptual process design. In addition, hybrid conceptual processes for pre and post-combustion capture based on hydrate formation coupled with membrane separation are presented. (C) 2007 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: gas hydrates; gas separation; post-combustion; pre-combustion; CO2 recovery
KeyWords Plus: FLUE-GAS; PHASE-EQUILIBRIUM; POWER-PLANTS; CO2; RECOVERY; TECHNOLOGY; GASIFICATION; SEPARATION; MIXTURES; HYDROGEN

Author Information
Reprint Address: Englezos, P (reprint author)

Addresses:

E-mail Addresses: englezos@interchange.ubc.ca

Publisher
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Categories / Classification
Research Areas: Engineering; Environmental Sciences & Ecology
Web of Science Categories: Engineering, Environmental; Engineering, Civil; Environmental Sciences

Document Information
Document Type: Article; Proceedings Paper
Documents Result List

Authors - LINGA, P
Research Fields - ENGINEERING
Show - Highly Cited Papers

<table>
<thead>
<tr>
<th>Accession</th>
<th>DOI</th>
<th>PMID</th>
<th>Article Name</th>
<th>Authors</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOS:00010.1016/j.jhazmat.2007.06.086</td>
<td>MEDLINE:1</td>
<td>THE CLATH</td>
<td>LINGA, P; KUMAR</td>
<td>J HAZARD MATER 149 (3): 625-629 NOV 19 2007</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>WOS:00010.1016/j.energy.2012.10.046</td>
<td>0</td>
<td>PRE-COMB</td>
<td>BABU, P; KUMAR</td>
<td>ENERGY 50: 364-373 FEB 1 2013</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>WOS:00010.1016/j.energy.2009.05.026</td>
<td>0</td>
<td>GAS HYDR</td>
<td>LEE, HJ; LEE, JD</td>
<td>ENERGY 35 (6): 2729-2733 SP. ISS. SI JUN 2010</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>WOS:00010.1016/j.apenergy.2014.01.063</td>
<td>0</td>
<td>HYDROGEN</td>
<td>VELUSWAMY, H</td>
<td>APPL ENERG 122: 112-132 JUN 1 2014</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>WOS:00010.1016/j.fuel.2012.10.031</td>
<td>0</td>
<td>INFLUENCE</td>
<td>KUMAR, A; SAKP</td>
<td>FUEL 105: 664-671 MAR 2013</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>WOS:00010.1016/j.energy.2015.03.103</td>
<td>0</td>
<td>A REVIEW</td>
<td>BABU, P; LINGA, P</td>
<td>ENERGY 85: 261-279 JUN 1 2015</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>WOS:00010.1016/j.apenergy.2014.11.052</td>
<td>0</td>
<td>CARBON D</td>
<td>YANG, SHB; BAB</td>
<td>APPL ENERG 162: 1131-1140 JAN 15 2016</td>
<td>ENGINEERING</td>
</tr>
</tbody>
</table>

Copyright © 2017 Thomson Reuters
Export Date 2017-01-16
<table>
<thead>
<tr>
<th>Citations</th>
<th>Title</th>
<th>Authors</th>
<th>Source</th>
<th>Addresses</th>
<th>Field</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>GAS HYDRATE FORMATION PROCESS FOR PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
<td>LEE HJ; LEE JD; LINGA P; ENGLEZOS P; KIM YS; LEE MS; KIM YD</td>
<td>ENERGY 35 (6): 2729-2733 SP. ISS. SI JUN 2010</td>
<td>Pusan Natl Univ, Sch Mat Sci & Engn, Pusan 609735, South Korea, Korea Inst Ind Technol, Dongnam Technol Serv Div, Pusan 618230, South Korea, Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada</td>
<td>ENGINEERING</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>A NEW APPARATUS TO ENHANCE THE RATE OF GAS HYDRATE FORMATION: APPLICATION TO CAPTURE OF CARBON DIOXIDE</td>
<td>LINGA P; KUMAR R; LEE JD; RIPMEESTER J; ENGLEZOS P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>INT J GREENH GAS CONTROL 4 (4): 630-637 JUL 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Citations:</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>HYDROGEN STORAGE IN CLATHRATE HYDRATES: CURRENT STATE OF THE ART AND FUTURE DIRECTIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>VELUSWAMY HP; KUMAR R; LINGA P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>APPL ENERG 122: 112-132 JUN 1 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Citations:</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>INFLUENCE OF CONTACT MEDIUM AND SURFACTANTS ON CARBON DIOXIDE CLATHRATE HYDRATE KINETICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>KUMAR A; SAKPAL T; LINGA P; KUMAR R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>FUEL 105: 664-671 MAR 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Citations:</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>REVIEW OF NATURAL GAS HYDRATES AS AN ENERGY RESOURCE: PROSPECTS AND CHALLENGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>CHONG ZR; YANG SHB; BABU P; LINGA P; LI XS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Citations:</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 1 of 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Citations: 187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>LINGA P; KUMAR R; ENGLEZOS P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>J HAZARD MATER 149 (3): 625-629 NOV 19 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addresses:</td>
<td>Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Citations: 87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE IN A FIXED BED REACTOR USING THE CLATHRATE HYDRATE PROCESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>BABU P; KUMAR R; LINGA P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>ENERGY 50: 364-373 FEB 1 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addresses:</td>
<td>Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIR Natl Chem Lab, Chem Engn & Proc Dev Div, Pune, Maharashtra, India</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Citations: 86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>GAS HYDRATE FORMATION PROCESS FOR PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>LEE HJ; LEE JD; LINGA P; ENGLEZOS P; KIM YS; LEE MS; KIM YD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>ENERGY 35 (6): 2729-2733 SP. ISS. SI JUN 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addresses:</td>
<td>Pusan Natl Univ, Sch Mat Sci & Engn, Pusan 609735, South Korea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea Inst Ind Technol, Dongnam Technol Serv Div, Pusan 618230, South Korea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Citations: 78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>A NEW APPARATUS TO ENHANCE THE RATE OF GAS HYDRATE FORMATION: APPLICATION TO CAPTURE OF CARBON DIOXIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>LINGA P; KUMAR R; LEE JD; RIPMEESTER J; ENGLEZOS P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>INT J GREENH GAS CONTROL 4 (4): 630-637 JUL 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addresses:</td>
<td>Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea Inst Ind Technol, Pusan, South Korea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Citations: 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>HYDROGEN STORAGE IN CLATHRATE HYDRATES: CURRENT STATE OF THE ART AND FUTURE DIRECTIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>VELOURSAMY HP; KUMAR R; LINGA P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>APPL ENERG 122: 112-132 JUN 1 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addresses:</td>
<td>Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIR, Natl Chem Lab, Chem Engn & Proc Dev Div, Pune, Maharashtra, India</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Citations: 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>INFLUENCE OF CONTACT MEDIUM AND SURFACTANTS ON CARBON DIOXIDE CLATHRATE HYDRATE KINETICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 1 of 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGHLY CITED PAPERS FOR (LINGA P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted by: Citations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 8 (of 8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Citations: 181</td>
<td>THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>LINGA P; KUMAR R; ENGLEZOS P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>J HAZARD MATER 149 (3): 625-629 NOV 19 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addresses:</td>
<td>Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Citations: 83</td>
<td>GAS HYDRATE FORMATION PROCESS FOR PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>LEE HJ; LEE JD; LINGA P; ENGLEZOS P; KIM YS; LEE MS; KIM YD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>ENERGY 35 (6): 2729-2733 SP. ISS. SI JUN 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Addresses:** | Pusan Natl Univ, Sch Mat Sci & Engn, Pusan 609735, South Korea,
Korea Inst Ind Technol, Dongnam Technol Serv Div, Pusan 618230, South Korea,
Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada |
| **Field:** | ENGINEERING | |
| 3 | **Citations:** 82 | **PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE IN A FIXED BED REACTOR USING THE CLATHRATE HYDRATE PROCESS** |
| **Authors:** | BABU P; KUMAR R; LINGA P |
| **Source:** | ENERGY 50: 364-373 FEB 1 2013 |
| **Addresses:** | Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore,
CSIR Natl Chem Lab, Chem Engn & Proc Dev Div, Pune, Maharashtra, India |
| **Field:** | ENGINEERING | |
| 4 | **Citations:** 76 | **A NEW APPARATUS TO ENHANCE THE RATE OF GAS HYDRATE FORMATION: APPLICATION TO CAPTURE OF CARBON DIOXIDE** |
| **Authors:** | LINGA P; KUMAR R; LEE JD; RIPMEESTER J; ENGLEZOS P |
| **Source:** | INT J GREENH GAS CONTROL 4 (4): 630-637 JUL 2010 |
| **Addresses:** | Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada,
Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada,
Korea Inst Ind Technol, Pusan, South Korea |
| **Field:** | ENGINEERING |
| 5 | **Citations:** 56 | **HYDROGEN STORAGE IN CLATHRATE HYDRATES: CURRENT STATE OF THE ART AND FUTURE** |
DIRECTIONS

Authors: VELUSWAMY HP; KUMAR R; LINGA P

Source: APPL ENERG 122: 112-132 JUN 1 2014

CSIR, Natl Chem Lab, Chem Engn & Proc Dev Div, Pune, Maharashtra, India.

Field: ENGINEERING

6 Citations: 47

Title: INFLUENCE OF CONTACT MEDIUM AND SURFACTANTS ON CARBON DIOXIDE CLATHRATE HYDRATE KINETICS

Authors: KUMAR A; SAKPAL T; LINGA P; KUMAR R

Source: FUEL 105: 664-671 MAR 2013

Field: ENGINEERING

7 Citations: 33

Title: MEDIUM PRESSURE HYDRATE BASED GAS SEPARATION (HBGS) PROCESS FOR PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE EMPLOYING A NOVEL FIXED BED REACTOR

Authors: BABU P; KUMAR R; LINGA P

Source: INT J GREENH GAS CONTROL 17: 206-214 SEP 2013

CSIR, Natl Chem Lab, Chem Engn & Proc Dev Div, Pune, Maharashtra, India.

Field: ENGINEERING

8 Citations: 12

Title: A REVIEW OF THE HYDRATE BASED GAS SEPARATION (HBGS) PROCESS FOR CARBON DIOXIDE PRE-COMBUSTION CAPTURE

Authors: BABU P; LINGA P; KUMAR R; ENGLEZOS P

Source: ENERGY 85: 261-279 JUN 1 2015

Natl Chem Lab, Chem Engn & Proc Dev Div, Pune, Maharashtra, India.

Field: ENGINEERING
<table>
<thead>
<tr>
<th>#</th>
<th>Citations</th>
<th>Title</th>
<th>Authors</th>
<th>Source</th>
<th>Addresses</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>82</td>
<td>GAS HYDRATE FORMATION PROCESS FOR PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
<td>LEE HJ; LEE JD; LINGA P; ENGLEZOS P; KIM YS; LEE MS; KIM YD</td>
<td>ENERGY 35 (6): 2729-2733 SP. ISS. SI JUN 2010</td>
<td>Pusan Natl Univ, Sch Mat Sci & Engn, Pusan 609735, South Korea, Korea Inst Ind Technol, Dongnam Technol Serv Div, Pusan 618230, South Korea, Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>A NEW APPARATUS TO ENHANCE THE RATE OF GAS HYDRATE FORMATION: APPLICATION TO CAPTURE OF CARBON DIOXIDE</td>
<td>LINGA P; KUMAR R; LEE JD; RIPMEESTER J; ENGLEZOS P</td>
<td>INT J GREENH GAS CONTROL 4 (4): 630-637 JUL 2010</td>
<td>Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada, Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada, Korea Inst Ind Technol, Pusan, South Korea</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>HYDROGEN STORAGE IN CLATHRATE HYDRATES: CURRENT STATE OF THE ART AND FUTURE</td>
<td></td>
<td></td>
<td></td>
<td>ENGINEERING</td>
</tr>
</tbody>
</table>
1. **Title:** THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE
 Authors: LINGA P, KUMAR R, ENGLEZOS P
 Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007
 Addresses: Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
 Field: ENGINEERING

2. **Title:** GAS HYDRATE FORMATION PROCESS FOR PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE
 Authors: LEE HJ, LEE JD, LINGA P, ENGLEZOS P, KIM YS, LEE MS, KIM YD
 Source: ENERGY 35 (6): 2729-2733 SP. ISS. SI JUN 2010
 Addresses: Pusan Natl Univ, Sch Mat Sci & Engn, Pusan 609735, South Korea, Korea Inst Ind Technol, Dongnam Technol Serv Div, Pusan 619230, South Korea, Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
 Field: ENGINEERING

3. **Title:** A NEW APPARATUS TO ENHANCE THE RATE OF GAS HYDRATE FORMATION: APPLICATION TO CAPTURE OF CARBON DIOXIDE
 Authors: LINGA P, KUMAR R, LEE JD, RIPMEESTER J, ENGLEZOS P
 Source: INT J GREENH GAS CONTROL 4 (4): 630-637 JUL 2010
 Addresses: Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada, Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada, Korea Inst Ind Technol, Pusan, South Korea
 Field: ENGINEERING

4. **Title:** PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE IN A FIXED BED REACTOR USING THE CLATHRATE HYDRATE PROCESS
 Authors: BABU P, KUMAR R, LINGA P
 Source: ENERGY 50: 364-373 FEB 1 2013
 Addresses: Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore, CSIR Natl Chem Lab, Chem Engn & Proc Dev Div, Pune, Maharashtra, India
 Field: ENGINEERING

5. **Title:** HYDROGEN STORAGE IN CLATHRATE HYDRATES: CURRENT STATE OF THE ART AND FUTURE DIRECTIONS
 Authors: VELUSWAMY HP, KUMAR R, LINGA P
 Source: APPL ENERG 122: 112-132 JUN 1 2014
 Addresses: Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore, CSIR Natl Chem Lab, Chem Engn & Proc Dev Div, Pune, Maharashtra, India
 Field: ENGINEERING

6. **Title:** INFLUENCE OF CONTACT MEDIUM AND SURFACTANTS ON CARBON DIOXIDE CLATHRATE HYDRATE KINETICS
 Authors: KUMAR A, SAKPAL T, LINGA P, KUMAR R
 Source: FUEL 105: 664-671 MAR 2013
 Addresses: CSIR Natl Chem Lab, Chem Engn & Proc Dev Div, Pune, Maharashtra, India, Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117548, Singapore
 Field: ENGINEERING
HIGHLY CITED PAPERS FOR (LINGA P)

Sorted by: Citations

1 - 7 (of 7) [1]

Page 1 of 1

1 Citations: 160

Title: THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Field: ENGINEERING

2 Citations: 74

Title: GAS HYDRATE FORMATION PROCESS FOR PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LEE HJ; LEE JD; LINGA P; ENGLEZOS P; KIM YS; LEE MS; KIM YD

Source: ENERGY 35 (6): 2729-2733 SP. ISS. SI JUN 2010

Addresses: Pusan Natl Univ, Sch Mat Sci & Engn, Pusan 609735, South Korea.
Korea Inst Ind Technol, Dongnam Technol Serv Div, Pusan 618230, South Korea.

Field: ENGINEERING

3 Citations: 66

Title: PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE IN A FIXED BED REACTOR USING THE CLATHRATE HYDRATE PROCESS

Authors: BABU P; KUMAR R; LINGA P

Source: ENERGY 50: 364-373 FEB 1 2013

CSIR Natl Chem Lab, Chem Engn & Proc Dev Div, Pune, Maharashtra, India.

Field: ENGINEERING

4 Citations: 64

Title: A NEW APPARATUS TO ENHANCE THE RATE OF GAS HYDRATE FORMATION: APPLICATION TO CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; LEE JD; RIPMEESTER J; ENGLEZOS P

Source: INT J GREENH GAS CONTROL 4 (4): 630-637 JUL 2010
INFLUENCE OF CONTACT MEDIUM AND SURFACTANTS ON CARBON DIOXIDE CLATHRATE HYDRATE KINETICS

Authors: KUMAR A; SAKPAL T; LINGA P; KUMAR R

Source: FUEL 105: 664-671 MAR 2013

HYDROGEN STORAGE IN CLATHRATE HYDRATES: CURRENT STATE OF THE ART AND FUTURE DIRECTIONS

Authors: VELUSWAMY HP; KUMAR R; LINGA P

Source: APPL ENERG 122: 112-132 JUN 1 2014

MEDIUM PRESSURE HYDRATE BASED GAS SEPARATION (HBGS) PROCESS FOR PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE EMPLOYING A NOVEL FIXED BED REACTOR

Authors: BABU P; KUMAR R; LINGA P

Source: INT J GREENH GAS CONTROL 17: 206-214 SEP 2013
THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Field: ENGINEERING

Copyright © 2015 The Thomson Corporation
THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

HIGHERLY CITED PAPER

Sorted by: Citations Page 1 of 1

1 - 1 (of 1) [1]

Citations: 141

Title: THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Field: ENGINEERING

Copyright © 2015 The Thomson Corporation
THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Addresses: Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada

Field: ENGINEERING
Highly Cited Paper

Title:
THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors:
LINGA P; KUMAR R; ENGLEZOS P

Source:
J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Addresses:

Field:
ENGINEERING

Copyright © 2015 The Thomson Corporation
THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Field: ENGINEERING
Title: THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Field: ENGINEERING
Citations: 113

Title: THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Field: ENGINEERING
<table>
<thead>
<tr>
<th>Sorted by:</th>
<th>Citations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 1 (of 1)</td>
<td></td>
<td>[1]</td>
</tr>
</tbody>
</table>

Citations: 107

Title: THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Field: ENGINEERING
<table>
<thead>
<tr>
<th>Sorted by:</th>
<th>Citations</th>
<th>Page 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 1 (of 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
<td></td>
</tr>
<tr>
<td>Authors:</td>
<td>LINGA P; KUMAR R; ENGLEZOS P</td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>J HAZARD MATER 149 (3): 625-629 NOV 19 2007</td>
<td></td>
</tr>
<tr>
<td>Addresses:</td>
<td>Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada.</td>
<td></td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2014 The Thomson Corporation
THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Field: ENGINEERING

Citations: 92
HIGHLY CITED PAPER

Sorted by: Citations

<table>
<thead>
<tr>
<th>1 - 1 (of 1)</th>
<th>Page 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citations: 83</td>
<td>Title: THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
</tr>
<tr>
<td>Authors: ENGLEZOS P; KUMAR R; LINGA P</td>
<td>Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007</td>
</tr>
<tr>
<td>Addresses: Univ British Columbia, Dept Chem & Biol Engn, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada; Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canad.</td>
<td>Field: ENGINEERING</td>
</tr>
</tbody>
</table>

Copyright © 2014 The Thomson Corporation
<table>
<thead>
<tr>
<th>Sorted by: Citations</th>
<th>Page 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 1 (of 1)</td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td>THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
</tr>
<tr>
<td>Authors:</td>
<td>LINGA P; KUMAR R; ENGEZOS P</td>
</tr>
<tr>
<td>Source:</td>
<td>J HAZARD MATER 149 (3): 625-629 NOV 19 2007</td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>1 - 1 (of 1)</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2013 The Thomson Corporation
HIGHLY CITED PAPERS FOR (LINGA P)

<table>
<thead>
<tr>
<th>Title:</th>
<th>THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors:</td>
<td>LINGA P; KUMAR R; ENGLEZOS P</td>
</tr>
<tr>
<td>Source:</td>
<td>J HAZARD MATER 149 (3): 625-629 NOV 19 2007</td>
</tr>
<tr>
<td>Field:</td>
<td>ENGINEERING</td>
</tr>
</tbody>
</table>

Citations: 75

Copyright © 2013 The Thomson Corporation
<table>
<thead>
<tr>
<th>Citations</th>
<th>Title</th>
<th>Authors</th>
<th>Source</th>
<th>Addresses</th>
<th>Field</th>
</tr>
</thead>
</table>
HIGHLY CITED PAPERS FOR (LINGA P)

<table>
<thead>
<tr>
<th>Sorted by: Citations</th>
<th>Page 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 1 (of 1)</td>
<td></td>
</tr>
</tbody>
</table>

Title: THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Addresses:

Field: ENGINEERING

Copyright © 2013 The Thomson Corporation
HIGHLY CITED PAPER

Sorted by: Citations

| Page 1 of 1 | 1 - 1 (of 1) | | Citations: 67 |

Title:
THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors:
LINGA P; KUMAR R; ENGLEZOS P

Source:
J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Addresses:

Field:
ENGINEERING

Copyright © 2013 The Thomson Corporation
HIGHLY CITED PAPERS FOR (LINGA P)

<table>
<thead>
<tr>
<th>Citations</th>
<th>46</th>
</tr>
</thead>
</table>

Title: THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors: LINGA P; KUMAR R; ENGLEZOS P

Source: J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Addresses:

Field: ENGINEERING

Copyright © 2012 The Thomson Corporation
CORE PAPERS IN GAS HYDRATE FORMATION PROCESS; CLATHRATE HYDRATE PROCESS; PRE-COMBUSTION CAPTURE; CARBON DIOXIDE

<table>
<thead>
<tr>
<th>Citations</th>
<th>Title</th>
<th>Authors</th>
<th>Source</th>
<th>Addresses</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
<td>LINGA P; KUMAR R; ENGLEZOS P</td>
<td>J HAZARD MATER</td>
<td>Univ British Columbia, Dept Chem & Biol Engn, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada.</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>6</td>
<td>GAS HYDRATE FORMATION PROCESS FOR PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE</td>
<td>LEE HJ; LEE JD; LINGA P; ENGLEZOS P; KIM YS; LEE MS; KIM YD</td>
<td>ENERGY</td>
<td>Pusan Natl Univ, Sch Mat Sci & Engn, Jangjeon 2 Dong, Pusan 609735, South Korea.</td>
<td></td>
</tr>
</tbody>
</table>
Highly Cited Paper

Title:
THE CLATHRATE HYDRATE PROCESS FOR POST AND PRE-COMBUSTION CAPTURE OF CARBON DIOXIDE

Authors:
LINGA P; KUMAR R; ENGLEZOS P

Source:
J HAZARD MATER 149 (3): 625-629 NOV 19 2007

Addresses:

Field:
ENGINEERING

Copyright © 2012 The Thomson Corporation
Highly Cited Thresholds

The highly cited threshold is the minimum number of citations received by the top 1% of papers in the research field published in the specified year.

Sample Report

In the following report, the top 1% of papers in Physics added to Web of Science in 2010 received at least 44 citations. The top 1% of papers in Plant & Animal Science added to Web of Science in 2011 received at least 16 citations. Articles citing the 2010 papers may have been published between 2010 and 2013. Articles citing the 2011 papers may have been published between 2011 and 2013.

<table>
<thead>
<tr>
<th>FIELD</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>44</td>
<td>26</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>PLANT & ANIMAL SCIENCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>29</td>
<td>16</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>